Abstract

This paper develops a novel Linear Parameter Varying (LPV) Model Predictive Control (MPC) algorithm for Semi-Active Suspension systems. The current state-of-the-art comprises two possible implementations: a) to consider the future variations of the LPV scheduling variables as uncertainties, thereby solving a robust optimization, which is usually time-consuming; or b) to estimate the future scheduling variables and solve a sub-optimal quadratic program, which can be evaluated rapidly. This paper proposes a control paradigm in between these paths, considering a robust min-max procedure with small predictions horizons, being implementable within the short 5ms sampling period of the suspension system. The method includes terminal ingredients, derived via LMIs, that ensure input-to-state stability and recursive feasibility. Realistic simulations show the effectiveness of the proposed method, when compared against a nonlinear MPC and a sub-optimal LPV MPC. The results show that the method is indeed able to run in real-time (in the order of milliseconds), almost as fast as the sub-optimal MPC, while still guaranteeing good safety and comfort performances for the vehicle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.