Abstract

Room-temperature confocal Raman scattering was used to probe the antiferromagnetic exchange energy J2 between the next-nearest-neighboring Ni ions in different sized NiO nanoparticles. NiO nanoparticles were synthesized using the sol–gel method and annealed at various temperatures ranging from 300 to 800 °C. The morphology and crystal structure of the prepared samples were characterized using SEM and XRD, revealing the uniformity and development of short-range crystallinity of NiO nanoparticles. This study shows that short spin correlation leads to an exponential dependency of particle size and the existence of Ni vacancies in two-magnon excitation. The Ni vacancy concentration plays an important role in lattice expansion, along with the size reduction effect. A direct comparison between short-range magnon excitation related to the Ni vacancy concentration and NiO nonstoichiometry has been made.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.