Abstract

The hydrated electron, e-(aq), has often served as a model system to understand the influence of condensed-phase environments on electronic structure and dynamics. Despite over 50 years of study, however, the basic structure of e-(aq) is still the subject of controversy. In particular, the structure of e-(aq) was long assumed to be an electron localized within a solvent cavity, in a manner similar to halide solvation. Recently, however, we suggested that e-(aq) occupies a region of enhanced water density with little or no discernible cavity. The potential we developed was only subtly different from those that give rise to a cavity solvation motif, which suggests that the driving forces for noncavity solvation involve subtle electron-water attractive interactions at close distances. This leads to the question of how dispersion interactions are treated in simulations of the hydrated electron. Most dispersion potentials are ad hoc or are not designed to account for the type of close-contact electron-water overlap that might occur in the condensed phase, and where short-range dynamic electron correlation is important. To address this, in this paper we develop a procedure to calculate the potential energy surface between a single water molecule and an excess electron with high-level CCSD(T) electronic structure theory. By decomposing the electron-water potential into its constituent energetic contributions, we find that short-range electron correlation provides an attraction of comparable magnitude to the mean-field interactions between the electron and water. Furthermore, we find that by reoptimizing a popular cavity-forming one-electron model potential to better capture these attractive short-range interactions, the enhanced description of correlation predicts a noncavity e-(aq) with calculated properties in better agreement with experiment. Although much attention has been placed on the importance of long-range dispersion interactions in water cluster anions, our study reveals that largely unexplored short-range correlation effects are crucial in dictating the solvation structure of the condensed-phase hydrated electron.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call