Abstract

Short-pulse welding parameters for resistance spot welding (RSW) of aluminum alloy AA6016-T4 using mediumfrequency direct current (MFDC) systems were developed to reduce the heat input required for nugget formation. Optimization of current and time parameters is critical during RSW of aluminum alloys for reducing energy requirements and avoiding weld imperfections, such as solidification cracking and expulsion, while maintaining weld quality, particularly given the high electrical and thermal conductivities of the materials. The welding time and the applied current level of the current pulse were varied systematically for thin sheets (1 mm or 0.04 in.) of AA6016-T4. The quality of the welds was evaluated by pull-out testing, ultrasound testing, and metallography techniques. Simulations of the same welding processes were performed with the finite element-based SORPAS® software. The results showed short-pulse MFDC RSW can reduce the energy required for sound welds in this alloy without requiring an increase in welding current. The simulations and experiments also showed the welding process had distinct weld nugget nucleation and growth phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.