Abstract

The appearance and disappearance of short‐lived large‐amplitude pulses in a nonlinear long wave model is studied in the framework of the modified Korteweg–de Vries equation. The major mechanism of such wave generation is modulational instability leading to the generation and interaction of the breathers. The properties of breathers are studied both within the modified Korteweg–de Vries equation, and also within the nonlinear Schrödinger equations derived by an asymptotic reduction from the modified Korteweg–de Vries for weakly nonlinear wave packets. The associated spectral problems (AKNS or Zakharov‐Shabat) of the inverse‐scattering transform technique also are utilized. Wave formation due to this modulational instability is investigated for localized and for periodic disturbances. Nonlinear‐dispersive focusing is identified as a possible mechanism for the formation of anomalously large pulses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.