Abstract

Transient-based methods for fault diagnosis of induction machines (IMs) are attracting a rising interest, due to their reliability and ability to adapt to a wide range of IM’s working conditions. These methods compute the time–frequency (TF) distribution of the stator current, where the patterns of the related fault components can be detected. A significant amount of recent proposals in this field have focused on improving the resolution of the TF distributions, allowing a better discrimination and identification of fault harmonic components. Nevertheless, as the resolution improves, computational requirements (power computing and memory) greatly increase, restricting its implementation in low-cost devices for performing on-line fault diagnosis. To address these drawbacks, in this paper, the use of the short-frequency Fourier transform (SFFT) for fault diagnosis of induction machines working under transient regimes is proposed. The SFFT not only keeps the resolution of traditional techniques, such as the short-time Fourier transform, but also achieves a drastic reduction of computing time and memory resources, making this proposal suitable for on-line fault diagnosis. This method is theoretically introduced and experimentally validated using a laboratory test bench.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call