Abstract

We have studied the effects of short-fiber/particle hybrid reinforcement on fracture toughness and fatigue crack growth in metal matrix composites. Reinforcement hybridization was achieved by a hybrid preform process, and composites were fabricated by the squeeze casting method. Al6061 matrix alloy and four composites having different short-fiber/particle ratio were tested. The fracture toughness ( K IC) and the fatigue threshold (Δ K th) increased with increasing particle contents, whereas the Paris’ exponent ( m) was insensitive to the short-fiber:particle ratio. These results emerged as a shift of the crack growth curve which implies on enhanced crack resistance over the entire stress intensity factor range. The positive aspect of particulate reinforcement is advocated by comparison of microstructural variables, and by observation of the crack path and surfaces. The characteristics of hybrid composites in damage tolerance are emphasized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.