Abstract
This paper describes a new method of finding thin, elongated structures in images and volumes. We use shortest paths to minimize very general functionals of higher-order curve properties, such as curvature and torsion. Our method uses line graphs to find the optimal path on a given discretization, often in the order of seconds on a single computer. The curves are then refined using local optimization making it possible to recover very smooth curves. We are able to place constraints on our curves such as maximum integrated curvature, or a maximum curvature at any point of the curve. To our knowledge, we are the first to perform experiments in three dimensions with curvature and torsion regularization. The largest graphs we process have over a hundred billion arcs. Experiments on medical images and in multi-view reconstruction show the significance and practical usefulness of higher order regularization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on pattern analysis and machine intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.