Abstract

Due to the proliferation of online social networking, a large number of personal data are publicly available. As such, personal attacks, reputational, financial, or family losses might occur once this personal and sensitive information falls into the hands of malicious hackers. Research on Privacy-Preserving Network Publishing has attracted much attention in recent years. But most work focus on node de-identification and link protection. In academic social networks, business transaction networks, and transportation networks, etc, node identities and link structures are public knowledge but weights and shortest paths are sensitive. In this work, we study the problem of k-anonymous path privacy. A published network graph with k-anonymous path privacy has at least k indistinguishable shortest paths between the source and destination vertices [21]. In order to achieve such privacy, three different strategies of modification on edge weights of directed graphs are proposed. Numerical comparisons show that weight-proportional-based strategy is more efficient than PageRank-based and degree-based strategies. In addition, it is also more efficient and causes less information loss than running on un-directed graphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.