Abstract
The Shortest Path Problem (SPP) is among the most studied problems in Operations Research, for its theoretical aspects but also because it appears as sub-problem in many combinatorial optimization problems, e.g. Vehicle Routing and Maximum Flow-Minimum Cost problems. Given a sequence of SPPs, suppose that two subsequent instances solely differ by a slight change in the graph structure: that is the set of nodes, the set of arcs or both have changed; then, the goal of the reoptimization consists in solving the SPP of the sequence by reusing valuable information gathered in the solution of the one. We focused on the most general scenario, i.e. multiple changes for any subset of arcs, for which, only the description of a dual-primal approach has been proposed so far [S. Pallottino and M.G. Scutell‘a, A new algorithm for reoptimizing shortest paths when the arc costs change, Oper. Res. Lett. 31 (2003), pp. 149-160.]. We implemented this framework exploiting efficient data structures, i.e. the Multi Level Bucket. In addition, we compare the performance of our proposal with the well-known Dijkstra's algorithm, applied for solving each modified problem from scratch. In this way, we draw the line – in terms of cost, topology, and size – among the instances where the reoptimization approach is efficient from those that should be solved from scratch.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.