Abstract

Previous chapter Next chapter Full AccessProceedings Proceedings of the 2011 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)Shortest Non-Crossing Walks in the PlaneJeff Erickson and Amir NayyeriJeff Erickson and Amir Nayyeripp.297 - 308Chapter DOI:https://doi.org/10.1137/1.9781611973082.25PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract Let G be an n-vertex plane graph with non-negative edge weights, and let k terminal pairs be specified on h face boundaries. We present an algorithm to find k non-crossing walks in G of minimum total length that connect all terminal pairs, if any such walks exist, in 2O(h2)n log k time. The computed walks may overlap but may not cross each other or themselves. Our algorithm generalizes a result of Takahashi, Suzuki, and Nishizeki [Algorithmica 1996] for the special case h ≤ 2. We also describe an algorithm for the corresponding geometric problem, where the terminal points lie on the boundary of h polygonal obstacles of total complexity n, again in 2O(h2)n time, generalizing an algorithm of Papadopoulou [Int. J. Comput. Geom. Appl. 1999] for the special case h ≤ 2. In both settings, shortest non-crossing walks can have complexity exponential in h. We also describe algorithms to determine in O(n) time whether the terminal pairs can be connected by any non-crossing walks. Previous chapter Next chapter RelatedDetails Published:2011ISBN:978-0-89871-993-2eISBN:978-1-61197-308-2 https://doi.org/10.1137/1.9781611973082Book Series Name:ProceedingsBook Code:PR138Book Pages:xviii-1788

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.