Abstract

Many shortest link scheduling algorithms adopt non-fading SINR interference model, which assumes that the received signal power will always remain determinate as long as the transmission power of the corresponding sender is fixed. In fact, because environment always influences the propagation of radio signals, the received signal power is by no means a certain value. Rayleigh fading is a statistical model for radio signals propagation. It assumes that the strength of a signal on a receiver is a random variable, varying with the Rayleigh distribution. This paper proposes a shortest link scheduling algorithm under the Rayleigh fading model (SLSRF). The SLSRF partitions the wireless network area into hexagons and colors the hexagons with three different colors such that two neighboring hexagons have different colors. The senders of the links scheduled simultaneously are arranged in hexagons with the same color. The correctness of the SLSRF is proved through theoretical analysis, and the efficiency is illustrated by elaborate simulations. Our simulation results demonstrate that the schedule delay of SLSRF is less than that of some results under the non-fading SINR interference model. Furthermore, we extend the SLSRF to a distributed version, which is suitable for large wireless networks.

Highlights

  • The fifth-generation (5G) wireless systems provide support for many applications, such as smart home, smart city [1, 2], smart traffic, smart health care [3], industry 4.0 [4], smart agriculture, unmanned aerial vehicles [5,6,7,8,9,10,11] and so on

  • We focus on the shortest link scheduling problem under the Rayleigh fading model

  • We found that the link scheduling strategy based on plane partition can effectively control the global interference of the signal-to-interference plus noise ratio (SINR) model

Read more

Summary

Introduction

The fifth-generation (5G) wireless systems provide support for many applications, such as smart home, smart city [1, 2], smart traffic, smart health care [3], industry 4.0 [4], smart agriculture, unmanned aerial vehicles [5,6,7,8,9,10,11] and so on. Many special applications require ultrareliable low-latency communications (URLLC) for 5G systems [12, 13]. The strict requirements of URLLC have led to research in many fields, including link scheduling problems for 5G systems (e.g., [14,15,16]). The correctness of any link scheduling algorithm relies on the underlying interference model. Much research on link scheduling problems has been conducted under the SINR model (e.g., [18,19,20,21,22,23,24,25]). The SINR model considers global interference, i.e., the sum of all interfering

Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call