Abstract
Signaling and metabolic pathways, which consist of chains of reactions that produce target molecules from source compounds, are cornerstones of cellular biology. Properly modeling the reaction networks that represent such pathways requires directed hypergraphs, where each molecule or compound maps to a vertex, and each reaction maps to a hyperedge directed from its set of input reactants to its set of output products. Inferring the most likely series of reactions that produces a given set of targets from a given set of sources, where for each reaction its reactants are produced by prior reactions in the series, corresponds to finding a shortest hyperpath in a directed hypergraph, which is NP-complete. We give the first exact algorithm for general shortest hyperpaths that can find provably optimal solutions for large, real-world, reaction networks. In particular, we derive a novel graph-theoretic characterization of hyperpaths, which we leverage in a new integer linear programming formulation of shortest hyperpaths that for the first time handles cycles, and develop a cutting-plane algorithm that can solve this integer linear program to optimality in practice. Through comprehensive experiments over all of the thousands of instances from the standard Reactome and NCI-PID reaction databases, we demonstrate that our cutting-plane algorithm quickly finds an optimal hyperpath-inferring the most likely pathway-with a median running time of under 10 seconds, and a maximum time of less than 30 minutes, even on instances with thousands of reactions. We also explore for the first time how well hyperpaths infer true pathways, and show that shortest hyperpaths accurately recover known pathways, typically with very high precision and recall. Source code implementing our cutting-plane algorithm for shortest hyperpaths is available free for research use in a new tool called Mmunin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of computational biology : a journal of computational molecular cell biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.