Abstract

The host-guest chemistry of cycloparaphenylenes (CPPs) of different sizes is described. [n]CPPs (n=5, 6, 7, 8, and 10) selectively interact with [n+5]CPPs, forming complexes [n+5]CPP⊃[n]CPP, which are the shortest double-walled armchair carbon nanotubes. The size selectivity is dictated by the difference in diameters of the CPPs (that is, 0.34-0.35 nm), which maximizes attractive van der Waals interactions. Theoretical calculations suggest that the orbital energies of the CPPs become perturbed upon complex formation, and orbital mixing between the two CPPs is predicted for large CPP pairs. The association constants in 1,1,2,2-[D2 ]tetrachloroethane, estimated by 1 H NMR titration, are approximately 103 mol L-1 at 50 °C. Van't Hoff plot analysis reveals that complexation is driven mainly by entropy owing to desolvation of the CPPs. [13]CPP also forms a complex with [4]cyclo-2,7-pyrenylene ([4]CPY), which is a π-extended [8]CPP. Theoretical calculations suggest that the formation of [13]CPP⊃[4]CPY is more exothermic than that of [13]CPP⊃[8]CPP. A ternary complex, [15]CPP⊃[10]CPP⊃C60 , is also formed by mixing [15]CPP and [10]CPP⊃C60 .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.