Abstract

Breeding semi-dwarf varieties to improve lodging resistance has been proven to be enormously successful in increasing grain yield since the advent of the “green revolution.” However, the breeding of the majority of semi-dwarf rice varieties in Asia has been dependent mainly on genetic introduction of the mutant alleles of SD1, which encodes a gibberellin (GA) 20-oxidase, OsGA20ox2, for catalyzing GA biosynthesis. Here, we report a new rice lodging-resistance gene, Shortened Basal Internodes (SBI), which encodes a gibberellin 2-oxidase and specifically controls the elongation of culm basal internodes through deactivating GA activity. SBI is predominantly expressed in culm basal internodes. Genetic analyses indicate that SBI is a semi-dominant gene affecting rice height and lodging resistance. SBI allelic variants display different activities and are associated with the height of rice varieties. Breeding with higher activity of the SBI allele generates new rice varieties with improved lodging resistance and increased yield. The discovery of the SBI provides a desirable gene resource for producing semi-dwarf rice phenotypes and offers an effective strategy for breeding rice varieties with enhanced lodging resistance and high yield.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.