Abstract
We study the problem of augmenting the locus Nℓ of a plane Euclidean network N by inserting iteratively a finite set of segments, called shortcut set, while reducing the diameter of the locus of the resulting network. There are two main differences with the classical augmentation problems: the endpoints of the segments are allowed to be points of Nℓ as well as points of the previously inserted segments (instead of only vertices of N), and the notion of diameter is adapted to the fact that we deal with Nℓ instead of N. This increases enormously the hardness of the problem but also its possible practical applications to network design. Among other results, we characterize the existence of shortcut sets, compute them in polynomial time, and analyze the role of the convex hull of Nℓ when inserting a shortcut set. Our main results prove that, while the problem of minimizing the size of a shortcut set is NP-hard, one can always determine in polynomial time whether inserting only one segment suffices to reduce the diameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.