Abstract

A shortcut biological nitrogen removal (SBNR) process converts ammonium directly through nitrite to nitrogen gas, thus requiring less aeration and carbon. We evaluated a hybrid SBNR (HSBNR) reactor containing an anoxic tank followed by an aerobic tank and a settling tank. The aerobic tank was filled with polyvinyl alcohol sponge media (20%, v/v) to attach and retain ammonium oxidizers. Two configurations of the HSBNR reactor were tested for treating a wastewater with high strength ammonium and organic electron donor. The HSNBR reactors accumulated nitrite stably for 1.5 years and maintained a high free ammonia (FA) concentration (20–25 mg/L) and a low dissolved oxygen (DO) concentration (<1 mg/L) in the aerobic tank. Apparently, the biofilm carriers increased the solids retention time (SRT) for ammonium oxidizers, while high FA and low DO selected against nitrite oxidizers and promoted direct denitrification of nitrite in the aerobic tank. The significant amount of chemical oxygen demand (COD) was removed by shortcut denitrification of nitrite in the anoxic tank.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.