Abstract

DNA methylation is essential for a wide variety of biological processes, yet the development of a highly efficient and robust technology remains a challenge for routine single-cell analysis. We developed a multiplex scalable single-cell reduced representation bisulfite sequencing (msRRBS) technology. It allows cell-specific barcoded DNA fragments of individual cells to be pooled before bisulfite conversion, free of enzymatic modification or physical capture of the DNA ends, and achieves read mapping rates of 62.5± 3.9%, covering 60.0±1.4% of CpG islands and 71.6± 1.6% of promoters in K562 cells. Its reproducibility is shown in duplicates of bulk cells with close to perfect correlation (R=0.97-0.99). At a low 1 Mb of clean reads, msRRBS provides highly consistent coverage of CpG islands and promoters, outperforming the conventional methods with orders of magnitude reduction in cost. Here, we use this method to characterize the distinct methylation patterns and cellular heterogeneity of six cell lines, plus leukemia and hepatocellular carcinoma models. Taking 4 hof hands-on time, msRRBS offers a unique, highly efficient approach for dissecting methylation heterogeneity in a variety of multicellular systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call