Abstract
ABSTRACTModern doubly fed induction generator (DFIG) wind turbines can ride through a symmetrical fault in the network by using a chopper protection on the direct current (DC) link without triggering a crowbar protection. A novel method to model the DC link system of such wind turbines as an equivalent resistance during symmetrical faults is presented in this paper. The method allows looking at the DFIG with chopper protection as to one with an equivalent crowbar protection and, hence, to apply to the former type of DFIG short‐circuit calculation methods developed for a DFIG with crowbar protection. This may be a valid help in short‐circuit calculations, for example, for protection settings. It also allows simulating for short‐circuit studies a DFIG with chopper protection, often not available in a standard power system simulation software, by using an equivalent DFIG with crowbar protection, which is a standard model in power system simulation software. The results for the short‐circuit current obtained through the proposed method are compared with simulations of a detailed model of a DFIG with chopper protection under different conditions, which showed good agreement. It is also shown that the DFIG with chopper protection delivers lower short‐circuit current than a DFIG with standard crowbar protection, especially for low initial loading. Copyright © 2011 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.