Abstract

The dispersion of plasma waves in systems of various dimensions is investigated up to the end point of the spectrum. In 2D and 3D systems, the plasmon spectrum still ends (due to Landau damping) within the applicability range of the quasi-classical approximation, i.e., for ħk ≪ pF (ħk is the plasmon momentum and pF is the electron Fermi momentum). In 1D systems, the results are qualitatively different, since the Landau damping is concentrated in a region where the quantum effects cannot be ignored. This peculiarity of 1D systems gives rise to undamped branches of acoustic plasmons with a phase velocity lower than the electron Fermi velocity in multicomponent 1D plasmas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call