Abstract
Infrared (IR) optoacoustic spectroscopy can separate a multitude of molecules based on their absorption spectra. However, the technique is limited when measuring target molecules in aqueous solution by strong water absorption at IR wavelengths, which reduces detection sensitivity. Based on the dependence of optoacoustic signal on the temperature of the probed medium, we introduce cooled IR optoacoustic spectroscopy (CIROAS) to mute water contributions in optoacoustic spectroscopy. We showcase that spectral measurements of proteins, lipids, and glucose in the short-wavelength IR region, performed at 4 °C, lead to marked sensitivity improvements over conventional optoacoustic or IR spectroscopy. We elaborate on the dependence of optoacoustic signals on water temperature and demonstrate polarity changes in the recorded signal at temperatures below 4 °C. We further elucidate the dependence of the optoacoustic signal and the muting temperature on sample concentration and demonstrate that changes in these dependences enable quantification of the solute concentration. We discuss how CIROAS may enhance abilities for molecular sensing in the IR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.