Abstract

Edge-enhanced imaging by spiral phase contrast has proven instrumental in revealing phase or amplitude gradients of an object, with notable applications spanning feature extraction, target recognition, and biomedical fields. However, systems deploying spiral phase plates encounter limitations in phase mask modulation, hindering the characterization of the modulation function during image reconstruction. To address this need, we propose and demonstrate an innovative nonlinear reconstruction method using a Laguerre-Gaussian composite vortex filter, which modulates the spectrum of the target. The involved nonlinear process spectrally transforms the incident short-wavelength-infrared (SWIR) signal from 1550 to 864 nm, subsequently captured by a silicon charge-coupled device. Compared with conventional schemes, our novel filtering method effectively suppresses the diffraction noise, significantly enhancing image contrast and resolution. By loading specific phase holograms on the spatial light modulator, bright-field imaging, isotropic, amplitude-controlled anisotropic, and directional second-order edge-enhanced imaging are realized. Anticipated applications for the proposed SWIR edge-enhanced imaging system encompass domains such as artificial intelligence recognition, deep tissue medical diagnostics, and non-destructive defect inspection. These applications underscore the valuable potential of our cutting-edge methodology in furthering both scientific exploration and practical implementations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.