Abstract
The paper presents a new approach for phylotyping that can be potentially used for pure cultures and for mixed bacterial populations. It is based on the use of short unique nucleotide sequences (k-mers) that are present in the genomes of all strains of the same species and are absent in bacterial genomes of other taxonomic groups. We show that the number of such sequences depends on the percentage bias towards A/T or G/C base pairs, increasing for genomes with approximately equal composition. We found that the largest contribution to the set of primarily unique sequences is given by 16–17-mers, while sigmoidal curves reflecting the dependence of the number of unique sequences on the length of k-mers showed the maximum slope increment for k = 17, 18. Unique sequences of the length 16–18 bases can therefore be offered as potential markers. Comparing the sets of unique k-mers in the genomes of four Enterobacter strains, we estimated the level of their intraspecies stability and interspecies plasticity. As a result, we suggest discriminatory subsets as stencils for phylotyping, thereby increasing the list of genotyping markers with signatures of the new type.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.