Abstract
Two classes of turbo codes constructed on high-order finite fields are introduced. The codes are derived from a particular protograph sub-ensemble of the (2,3) regular low-density parity-check (LDPC) code ensemble. The first construction results in a parallel concatenation of two non-binary, time-variant accumulators. The second construction consists of the serial concatenation of a non-binary time-variant differentiator with a non-binary time-variant accumulator, and provides a highly structured flexible encoding scheme for (2,4) LDPC codes. A cycle graph representation is also provided. The proposed codes can be decoded efficiently either as LDPC codes (via belief propagation decoding on their bipartite graphs) or as turbo codes (via the forward-backward algorithm applied to the component code trellises) by means of the fast Fourier transform. The proposed codes provide remarkable coding gains (more than 1 dB at a codeword error rate 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-4</sup> ) over binary LDPC and turbo codes in the moderate-short block length regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.