Abstract

We study the short-time evolution of the bipartite entanglement in quantum lattice systems with local interactions in terms of the purity of the reduced density matrix. A lower bound for the purity is derived in terms of the eigenvalue spread of the interaction Hamiltonian between the partitions. Starting from an initially separable state the purity decreases as $1 - (t/\tau)^2$, i.e. quadratically in time, with a characteristic time scale $\tau$ that is inversly proportional to the boundary size of the subsystem, i.e., as an area-law. For larger times an exponential lower bound is derived corresponding to the well-known linear-in-time bound of the entanglement entropy. The validity of the derived lower bound is illustrated by comparison to the exact dynamics of a 1D spin lattice system as well as a pair of coupled spin ladders obtained from numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.