Abstract

Field experiments were conducted to study the short-time response in growth and sediment properties of Zizania latifolia to four levels of water depth: 10, 50, 90, and 130 cm. The results showed that Z. latifolia was sensitive to high water depth stress in terms of the significantly decreased basal stem diameter, leaf width, root length, total biomass, and root to shoot ratio with increasing water depth. It was found suitable to grow in shallow water less than 50 cm in depth. The growth of Z. latifolia significantly increased sediment moisture content and porosity, while reduced wet bulk density in sediment and NH4–N concentration in interstitial water. Along the water depth gradient, the growth of Z. latifolia significantly impacted sediment wet bulk weight and loss on ignition, both NH4–N and PO4–P concentrations in interstitial water. However, no obvious regularities were observed in the sediment vertical profiles. NH4–N and PO4–P concentrations in interstitial water were much higher than in overlying water, indicating that they could diffuse from sediment to overlying water. NH4–N concentration was also higher in deep sediment. Growth properties of Z. latifolia (except for leaf length) are significantly correlated to wet bulk density, loss on ignition, NH4–N concentration in sediment and NH4–N, PO4–P concentrations in interstitial water. The results indicate that water depth less than 50 cm is favorable for the growth of Z. latifolia, where it can exert its ecological function effectively. This research suggests a possibility to promote the growth of Z. latifolia and exert its ecological function by rational water depth management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.