Abstract

This study evaluated the effect of forskolin and FSH on pig oocyte maturation when cultured in a maturation inhibiting system. Ovaries from prepubertal gilts were collected at a local slaughterhouse. Oocytes were cultured in a hypoxanthine (HX 4 mM) containing M 199 for 24 or 40 h with or without forskolin and FSH treatment. After the culture, we examined germinal vesicle breakdown (GVBD) and polar body (PB) formation. Two experiments were designed. (1) Cumulus enclosed oocytes (CEO) were cultured for 24 or 40 h with or without different doses of forskolin and FSH. (2) CEO were primed by forskolin and FSH for different times and then transferred into an HX-medium for a further culture. The total culture period was 24 h. The results revealed that 4 mM HX markedly prevented pig CEO from undergoing GVBD. After 24 and 40 h culture, FSH (50–200 U/L) stimulated oocytes to resume meiosis by overcoming the inhibition of HX. Both GVBD and PB formation were increased (P < 0.002 and 0.01 respectively) after 40 h exposed to FSH. Forskolin showed a biphasic effect on CEO maturation. Within 24 h forskolin, in combination with HX, inhibited oocytes maturation. The GVBD percentage was significantly decreased compared to HX alone group (2% to 20%, P < 0.01), whereas no inhibition was observed after 40 h of culture. The second experiment showed that forskolin (3 u M) and FSH (100 U/L) priming CEO could timedependently induce oocyte maturation by overriding the inhibition of HX. After 30 and 60 min priming by FSH or forskolin, the GVBD and PB percentage was significantly increased (P < 0.002 and 0.01 respectively). No difference of GVBD percentage was observed between FSH short time priming group and FSH long time presentation group. In conclusion, we found that forskolin and FSH in vitro can stimulate pig cumulus cells to secrete a meiosisactivating substance which induces the oocyte to overcome the inhibition of hypoxanthine and undergo GVBD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.