Abstract

A new adaptive excision approach for nonstationary interference excision in direct sequence spread spectrum (DS/SS) communications is introduced. The proposed excision approach is based on the attractive localization properties of the impulse responses of the multiple pole filters. These impulse responses have Gaussian-like shapes and decrease in bandwidth with higher pole multiplicities. When used as data windows, they field a large class of computationally efficient short-time Fourier transforms (STFTs). Localization measures can be applied to determine the optimum window that maximally concentrates the interference in the time-frequency (t.-f.) domain. Interference mitigation is then achieved by applying a binary excision mask to the corresponding STFT for each data bit. We show that the proposed interference excision method permits both data-dependent windowing and time-varying filtering and leads to improved BER performance of the DS/SS system. The paper also derives the general optimum receiver implementing the STFT-based interference excision system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.