Abstract

Extensive application of zinc oxide (ZnO) nanoparticles (NPs) in everyday life results in increased exposure to these NPs. Spermatogonial stem cells (SSCs) guarantee sperm production throughout the male reproductive life by providing a balance between self-renewal and differentiation. We used an in vitro platform to investigate the ZnO NPs effects on SSCs. We successfully synthesized ZnO NPs. In order to investigate these NPs, we isolated SSCs from mouse testes and cultured them in vitro. Our results confirmed the uptake of ZnO NPs by the cultured SSCs. We observed a dose- and time-dependent decrease in SSC viability. Both spherical and nanosheet ZnO NPs had the same cytotoxic effects on the SSCs, irrespective of their shapes. Moreover, we have shown that short time (one day) exposure of SSCs to a low concentration of ZnO NPs (10 μg/mL) promoted expressions of specific genes (Plzf, Gfr α1 and Bcl6b) for SSC self-renewal and differentiation genes (Vasa, Dazl, C-kit and Sycp3) expressed by spermatogonia during spermatogenesis. Our study provides the first insight into ZnO NPs function in SSCs and suggests a new function for ZnO NPs in the male reproductive system. We demonstrated that ZnO NPs might promote spermatogenesis via upregulation of gene expression related to SSC self-renewal and differentiation at low concentrations. Additional research should clarify the possible effect of ZnO NPs on the SSC genome and its effects on human SSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call