Abstract

When a liquid drop contacts a wettable surface, the liquid spreads over the solid to minimize the total surface energy. The first moments of spreading tend to be rapid. For example, a millimeter-sized water droplet will wet an area having the same diameter as the drop within a millisecond. For perfectly wetting systems, this spreading is inertially dominated. Here we identify that even in the presence of a contact line, the initial wetting is dominated by inertia rather than viscosity. We find that the spreading radius follows a power-law scaling in time where the exponent depends on the equilibrium contact angle. We propose a model, consistent with the experimental results, in which the surface spreading is regulated by the generation of capillary waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.