Abstract

The effects of the measurement apparatus on quantum coherence are studied by considering a purely dephasing model of a qubit. The initial state is prepared from a thermal state of the whole system by performing a nonselective measurement on the qubit. The magnitude of the initial postmeasurement coherence is bounded by the value [Formula: see text], which is realized with special measurement schemes and in the low-temperature limit. The coherence magnitude identically vanishes, increases or decreases with an approximately constant rate over a determined short-time scale, according to the choice of the preparation measurement. The maximization of the short-time increasing or decreasing rate is favored by the choice of other special measurement schemes and the high-temperature limit. The measurement apparatus allows to manipulate the quantum coherence of the qubit over short times via nonselective preparation measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call