Abstract

The safe and stable operation of wind power systems requires the support of wind speed prediction. To ensure the controllability and stability of smart grid dispatching, a novel hybrid model consisting of data-adaptive decomposition, reinforcement learning ensemble, and improved error correction is established for short-term wind speed forecasting. In decomposition module, empirical wavelet transform algorithm is used to adaptively disassemble and reconstruct the wind speed series. In ensemble module, Q-learning is utilized to integrate gated recurrent unit, bidirectional long short-term memory, and deep belief network. In error correction module, wavelet packet decomposition and outlier-robust extreme learning machine are combined to developing predictable components. An appropriate correction shrinkage rate is used to obtain the best correction effect. Ljung-Box Q-Test is utilized to judge the termination of the error correction iteration. Four real data are utilized to validate model performance in the case study. Experimental results show that: (a) The proposed hybrid model can accurately capture the changes of wind data. Taking 1-step prediction results as an example, the mean absolute errors for site #1, #2, #3, and #4 are 0.0829 m/s, 0.0661 m/s, 0.0906 m/s, and 0.0803 m/s, respectively; (b) Compared with several state-of-the-art models, the proposed model has the best prediction performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call