Abstract

AbstractDuring the 1991 94 summer held seasons, time-correlated measure-merits of water pressure and surface speed were made over and down-glacier from a major riegel on Storglaciären, Sweden. Measurements were made at sub-hourly time-scales in order to discern details in the diurnal cycle. Large water-input events, typically associated with rain storms, produced coherent, lagged surface-velocity responses that could be understood in terms of till deformation or decoupling, and these have been discussed elsewhere. The consequences of smaller diurnal water-pressure events w ere more enigmatic, in that acceleration of ice flow generally preceded the onset of the local water-pressure rise. From consideration of these data and other work done on the hydrology of Storglaciären, we infer that the ice in this area is generally pushed from behind via a relaxation in extensional strain across the riegel. Hence, accelerations occur in response to increases in water pressure that occur up-glacier and that precede local water-pressure rises. In addition, following a period of large storm events, surface speeds became more spatially coherent and were in phase with the diurnal water-pressure cycle. This suggests that the large water-pressure events lead to a spatially more homogeneous subglacial drainage system. Sliding laws need to take into account such temporal changes in spatial coherence of the subglacial drainage system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call