Abstract
Abstract. In today’s world, the number of vehicles is increasing rapidly in developing countries and China and remains stable in all other countries, while road infrastructure mostly remains unchanged, causing congestion problems in many cities. Urban Traffic Control systems can be helpful in counteracting congestion if they receive accurate information on traffic flow. So far, these data are collected by sensors on roads, such as Inductive Loops, which are rather expensive to install and maintain. A less expensive approach could be to use a limited number of sensors combined with Artificial Intelligence to forecast the intensity of traffic at any point in a city. In this paper, we propose a simple yet accurate short-term urban traffic forecasting solution applying supervised window-based regression analysis using Deep Learning algorithm. Experimental results show that is it possible to forecast the intensity of traffic with good accuracy just monitoring its intensity in the last few minutes. The most significant result, in our opinion, is that the machine can generate accurate predictions even with no knowledge of the current time, the day of the week or the type of the day (holiday, weekday, etc).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.