Abstract

Abstract Bemisia tabaci (Gennadius), a major pest that can adversely affect economies and agriculture globally, is particularly sensitive to climate change-induced temperature fluctuations, which can intensify its outbreaks. Orius similis Zheng, a primary natural predator of B. tabaci, also experiences temperature-related effects that influence its biocontrol efficacy. Thus, understanding the response of O. similis to temperature changes is pivotal for optimizing its biocontrol potential. Herein, our investigations showed that the functional response of O. similis to both high- and low-instar nymphs of B. tabaci adheres to the type II model at temperatures of 19, 22, 25, 28, and 31 °C. At 28 °C, O. similis exhibits the highest instantaneous attack rate (high-instar: 1.1580, low-instar: 1.2112), and the shortest handling time per prey (high-instar: 0.0218, low-instar: 0.0191). The efficacy of O. similis in controlling B. tabaci nymphs follows the sequence: 28 °C > 25 °C > 31 °C > 22 °C > 19 °C. Additionally, search efficiency inversely correlates with prey density. Simulations using the Hessell–Varley interference model indicate that increased density of O. similis under any temperature condition leads to reduced predation rates. Moreover, O. similis shows a predation preference for low-instar nymphs of B. tabaci, with higher predation level observed at the same temperature. In conclusion, for effective control of B. tabaci in field releases, O. similis should be optimally released at temperatures between 25 and 28 °C to preferably target the egg or early nymph stages of B. tabaci and determining the appropriate number of O. similis is important to minimize interference among individuals and enhance biocontrol efficacy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.