Abstract
Accurate short term solar irradiation forecasting is necessary for smart grid stability and to manage bilateral contract negotiations between suppliers and customers. Traditional machine learning methods are unable to acquire and rectify nonlinear characteristics from solar dataset, which not only complicates model construction but also affect prediction accuracy. To address these issues, a deep learning based architecture with predictive analysis strategy is developed in this manuscript. In the first stage, the original solar irradiation sequences are divided into many intrinsic mode functions to generate a prospective feature set using a sophisticated signal decomposition technique. After that, an iteration method is used to generate a prospective range of frequency related to deep learning model. This method is created by linked algorithm using the GA and deep learning network. The findings by the proposed model employing sequences obtained by the preprocessing methodology considerable improve prediction accuracy as comparison to conventional models. In contrast, when confronted with a high resolution dataset derived from big data set, the chosen dataset may not only conduct a huge data reduction, but also enhances forecasting accuracy up to 22.74 percent over a variety of evaluation metrics. As a result, the proposed method might be used to predict short-term solar irradiation with greater accuracy using a solar dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.