Abstract
One of the key quantities of interest to an insurance company is the total amount to be paid out on a particular portfolio of policies over a fixed time interval, such as an accounting period. This quantity may be approached in various ways, and we mention two popular models below. We refer to both these models as examples of short term risk models because they model a risk over a fixed time period. This is in contrast to the classical risk model in Chapter 6, where the stochastic evolution of the flow of claim payments and premium income is modelled over time, and properties of this evolution over an infinite time period are derived. As might be expected, the techniques and results of Chapter 6 are deeper and more complex than those in this chapter, but they build on the foundations that we develop here for short term models. One short term model is the individual risk model , where we consider the portfolio to consist of a fixed number, n , of independent policies, and the total amount claimed on the portfolio in a fixed time period is modelled as a random variable T , given by T=Y 1 + ... + Y n , where Y i is the total amount claimed on policy i , and Y 1 , …, Y n are assumed to be independent, but not necessarily identically distributed. It turns out that it is more difficult than might be expected at first sight to deal with this apparently simple quantity in terms of numerical calculations and in terms of obtaining analytical expressions for the distribution of T . This model is considered in §3.8.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.