Abstract

Peer-to-Peer (P2P) energy trading has gained much attention recently due to the advanced development of distributed energy resources. P2P enables prosumers to trade their surplus electricity and allows consumers to purchase affordable and locally produced renewable energy. Therefore, it is significant to develop solutions that are able to forecast energy consumption and generation toward better power management, thereby making renewable energy more accessible and empowering prosumers to make an informed decision on their energy management. In this paper, several models for forecasting short-term renewable energy consumption and generating are developed and discussed. Real-time energy datasets were collected from smart meters that were installed in residential premises in Western Australia. These datasets are collected from August 2018 to Apr 2019 at fine time resolution down to 5 s and comprise energy import from the grid, energy export to the grid, energy generation from installed rooftop PV, energy consumption in households, and outdoor temperature. Several models for forecasting short-term renewable energy consumption and generating are developed and discussed. The empirical results demonstrate the superiority of the optimised deep learning-based Long Term Short Memory (LSTM) model in forecasting both energy consumption and generation and outperforms the baseline model as well as the alternative classical and machine learning methods by a substantial margin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.