Abstract

A k-nearest neighbor (kNN) ensemble model has been developed to generate Probability Density Function (PDF) forecasts for intra-hour Direct Normal Irradiance (DNI). This probabilistic forecasting model, which uses diffuse irradiance measurements and cloud cover information as exogenous feature inputs, adaptively provides arbitrary PDF forecasts for different weather conditions. The proposed models have been quantitatively evaluated using data from different locations characterized by different climates (continental, coastal, and island). The performance of the forecasts is quantified using metrics such as Prediction Interval Coverage Probability (PICP), Prediction Interval Normalized Averaged Width (PINAW), Brier Skill Score (BSS), and the Continuous Ranked Probability Score (CRPS), and other standard error metrics. A persistence ensemble probabilistic forecasting model and a Gaussian probabilistic forecasting model are employed to benchmark the performance of the proposed kNN ensemble model. The results show that the proposed model significantly outperform both reference models in terms of all evaluation metrics for all locations when the forecast horizon is greater than 5-min. In addition, the proposed model shows superior performance in predicting DNI ramps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.