Abstract

In a nonlinear, chaotic dynamical system, there are typically regions in which an infinitesimal error grows and regions in which it decays. If the observer does not know the evolution law, recourse is taken to non-dynamical methods, which use the past values of the observables to fit an approximate evolution law. This fitting can be local, based on past values in the neighborhood of the present value as in the case of Farmer–Sidorowich (FS) technique, or it can be global, based on all past values, as in the case of Artificial Neural Networks (ANN). Short-term predictions are then made using the approximate local or global mapping so obtained. In this study, the dependence of statistical prediction errors on dynamical error growth rates is explored using the Lorenz-63 model. The regions of dynamical error growth and error decay are identified by the bred vector growth rates or by the eigenvalues of the symmetric Jacobian matrix. The prediction errors by the FS and ANN techniques in these two regions are compared. It is found that the prediction errors by statistical methods do not depend on the dynamical error growth rate. This suggests that errors using statistical methods are independent of the dynamical situation and the statistical methods may be potentially advantageous over dynamical methods in regions of low dynamical predictability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.