Abstract

The difference between observed and modelled precession/nutation reveals unmodelled signals commonly referred to as Celestial Pole Offsets (CPO), denoted by dX and dY. CPO are currently observed only by Very Long Baseline Interferometry (VLBI), but there is nearly 4 weeks of latency by which the data centers provide the most accurate, final CPO series. This latency problem necessitates predicting CPO for high-accuracy, real-time applications that require information regarding Earth rotation, such as spacecraft navigation. Even though the International Earth Rotation and Reference Systems Service (IERS) provides so-called rapid CPO, they are usually less accurate and therefore, may not satisfy the requirements of the mentioned applications. To enhance the quality of CPO predictions, we present a new methodology based on Neural Additive Models (NAMs), a class of interpretable machine learning algorithms. We formulate the problem based on long short-term memory neural networks and derive simple analytical relations for the quantification of prediction uncertainty and feature importance, thereby enhancing the intelligibility of predictions made by machine learning. We then focus on the short-term prediction of CPO with a forecasting horizon of 30 days. We develop an operational framework that consistently provides CPO predictions. Using the CPO series of Jet Propulsion Laboratory as the input to the algorithm, we show that NAMs predictions improve the IERS rapid products on average by 57% for dX and 25% for dY under fully operational conditions. Our predictions are both accurate and overcome the latency issue of final CPO series and thus, can be used in real-time applications.Graphical

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.