Abstract
A short-term prediction method for distributed PV power based on an improved selection of similar time periods (ISTP) is proposed, to address the problem of low output power prediction accuracy due to a large number of influencing factors and the large difference in the degree of influence of various factors. First, the simple correlation coefficient (SCC) based on path analysis is used to screen the main influencing factors with stronger correlation with PV output power, and these factors are classified into three categories. Second, correlations of the three dimensions are calculated, respectively: (i) TOPSIS (with weights optimized by the SCC) determines meteorological correlation, (ii) linear weighting (based on the fuzzy ranking) obtains time correlation, and (iii) load correlation is quantified with existing current parameters. Third, the combined impact correlation (CIC) is obtained by weighting the three correlations above to establish criteria for the selection of similar periods, and a short-term PV power prediction model is established. Finally, experimental results based on real data of Australian Yulara Solar System PV plant demonstrate that errors of proposed ISTP method are respectively improved by 47.06% and 46.09% compared with the traditional ELMAN and similar day method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.