Abstract

Short-term power load forecasting is essential in ensuring the safe operation of power systems and a prerequisite in building automated power systems. Short-term power load demonstrates substantial volatility because of the effect of various factors, such as temperature and weather conditions. However, the traditional short-term power load forecasting method ignores the influence of various factors on the load and presents problems of limited nonlinear mapping ability and weak generalization ability to unknown data. Therefore, a short-term power load forecasting method based on GRA and ABC-SVM is proposed in this study. First, the Pearson correlation coefficient method is used to select critical influencing factors. Second, the gray relational analysis (GRA) method is utilized to screen similar days in the history, construct a rough set of similar days, perform K-means clustering on the rough sets of similar days, and further construct the set of similar days. The artificial bee colony (ABC) algorithm is then utilized to optimize penalty coefficient and kernel function parameters of the support vector machine (SVM). Finally, the above method is applied on the basis of actual load data in Nanjing for simulation verification, and the results show the effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.