Abstract

Sophonia orientalis (Matsumura), also known as the two-spotted leafhopper, is a widespread exotic pest of many economically important crop plants and ornamental plants in Hawaii. Sophonia orientalis is highly polyphagous and is a major threat to some of the native endemic plants. Despite the successful establishment in Hawaii, interactions of S. orientalis with its host plants remain poorly understood. Previous studies primarily focused on distribution, parasitism, and oviposition of S. orientalis in Hawaii, whereas plant physiological responses to the leafhopper's injury, and, specifically, gas exchange rates in plants, have not yet been described. In this study, we examined a short-term physiological response of a native Hawaiian plant, Hibiscus arnottianus (A. Gray), to injury by S. orientalis. We also explored whether Camellia sinensis (L.) Kuntze, a native host plant of S. orientalis in Asia, exhibits a similar response. We found that H. arnottianus plants demonstrated a rapid (2-d) physiological response to injury accompanied by 40% reduction in rate of photosynthesis and 42% reduction in rate of transpiration, whereas C. sinensis did not exhibit any reduction in gas exchange rates. We did not record any changes in plant chlorophyll levels after plant injury in either species. Our results suggest that H. arnottianus is responding to the leafhopper feeding with a generalized wound response predicted for novel plant-insect herbivore associations. We discuss potential future directions for studies which might focus on host plant responses to S. orientalis in its native versus introduced range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.