Abstract

Abstract A one-dimensional version of the Garwood bulk, oceanic mixed layer model is used to simulate the short- term response in a 60° sector. The atmospheric forcing is derived from a version of the UCLA general circulation model used by Sandgathe to study the role of air-sea fluxes in maritime cyclogenesis. A five-day integration of the ocean model is made using the complete 3 h momentum and heat flux histories as calculated by the sophisticated planetary boundary layer, latent heat and radiative parameterizations of the UCLA model. The zonal mean sea-surface temperature changes during the five days include increases of 0.4°C per day in equatorial regions and decreases of 0.2°C per day along the Northern Hemisphere storm track. Ocean temperature changes and the associated atmospheric forcing are related using a storm-following coordinate system. In addition to the general rapid warming of the ocean surface layers in the tropical regions, there is a large horizontal variability. High surface temperature...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.