Abstract
In this work, we provide a smart home occupancy prediction technique based on environmental variables such as CO2, noise, and relative temperature via our machine learning method and forecasting strategy. The proposed algorithms enhance the energy management system through the optimal use of the electric heating system. The Long Short-Term Memory (LSTM) neural network is a special deep learning strategy for processing time series prediction that has shown promising prediction results in recent years. To improve the performance of the LSTM algorithm, particularly for autocorrelation prediction, we will focus on optimizing weight updates using various approaches such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The performances of the proposed methods are evaluated using real available datasets. Test results reveal that the GA and the PSO can forecast the parameters with higher prediction fidelity compared to the LSTM networks. Indeed, all experimental predictions reached a range in their correlation coefficients between 99.16% and 99.97%, which proves the efficiency of the proposed approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.