Abstract

Over the past decades, wildfires have affected extensive areas of the Mediterranean region with negative impacts on the environment. Most of the studies on fire-affected areas have focused on sediment losses by overland flow, whereas few have addressed post-fire nutrient export. The present study aimed to address this research gap by assessing nitrogen (nitrate and total nitrogen) losses by overland flow in a recently burnt area in north-central Portugal. To this end, three burnt slopes were selected for their contrasting forest types (eucalypt vs. pine) and parent materials (granite vs. schist). The selected study sites were a eucalypt site on granite (BEG), a eucalypt site on schist (BES) and a maritime pine site on schist (BPS). Overland flow samples were collected during the first six months after the wildfire on a 1- to 2-weekly basis, after which this study had to be cancelled due to bench terracing of some of the sites. A peak in total nitrogen concentrations was observed in burnt areas immediately after the first post-fire rainfall event as a response to the erosion of the N-enriched ash layer. After this initial peak, smaller peaks were observed throughout the study period, mainly as a response to overland flow and/or erosion events. Nitrogen export differed strikingly between the two types of forests on schist, being higher at the eucalypt than at the pine site, due to the lack of a protective soil layer. Parent material did not play an important role on nitrogen export by overland flow since no significant differences were found between the eucalypt sites on granite and schist. The present study provides some insight into the differences in post-fire soil fertility losses between forest types and parent materials in the Mediterranean region, which is crucial information for defining post-fire land management measures to reduce soil degradation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.