Abstract

A new hybrid adaptive autoregressive moving average (ARMA) and functional link neural network (FLNN) trained by adaptive cubature Kalman filter (ACKF) is presented in this paper for forecasting day-ahead mixed short-term demand and electricity prices in smart grids. The hybrid forecasting framework is intended to capture the dynamic interaction between the electricity consumers and the forecasted prices resulting in the shift of demand curve in electricity market. The proposed model comprises a linear ARMA-FLNN obtained by using a nonlinear expansion of the weighted inputs. The nonlinear functional block helps introduce nonlinearity by expanding the input space to higher dimensional space through basis functions. To train the ARMA-FLNN, an ACKF is used to obtain faster convergence and higher forecasting accuracy. The proposed method is tested on several electricity markets, and the performance metrics such as the mean average percentage error (MAPE), and error variance are compared with other forecasting methods, indicating the improved accuracy of the approach and its suitability for a real-time forecasting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.