Abstract

Due to excellent mechanical properties and good corrosion resistance, titanium-aluminium-vanadium (Ti-6Al-4V) and titanium-aluminium-niobium (Ti-6Al-7Nb) are extensively used for orthopedic surgery. Concern has been voiced concerning the implications of the constituent vanadium in Ti-6Al-4V on the surrounding environment. Particularly in osteosynthesis where the alloys stand in direct contact to skeletal muscle, undesirable biologic reactions may have severe consequences. In a comparative study, we assessed in vivo nutritive perfusion and leukocytic response of striated muscle to the metals Ti-6Al-4V, Ti-6Al-7Nb, and commercially pure titanium (cpTi), thereby drawing conclusions on their short-term inflammatory potential. In 28 hamsters, utilizing the dorsal skinfold chamber preparation and intravital microscopy, we quantified primary and secondary leukocyte-endothelial cell interaction, leukocyte extravasation, microvascular diameter change, and capillary perfusion in collecting and postcapillary venules of skeletal muscle. A manifest discrepancy between the metals concerning impact on local microvascular parameters was not found. All metals induced an only transient and moderate inflammatory response. Only a slight increase in leukocyte recruitment and a more sluggish recuperation of inflammatory parameters in animals treated with Ti-6Al-4V compared to the other two metals suggested a minor, overall not significant discrepancy in biocompatibility. Gross toxicity of bulk Ti-6Al-4V on surrounding tissue could not be found. Conclusively, the commonly used biomaterials Ti-6Al-4V, Ti-6Al-7Nb, and cpTi induce an only transient inflammatory answer of the skeletal muscle microvascular system. Our results indicate that on the microvascular level the tested bulk Ti-alloys and cpTi do not cause adverse biologic reactions in striated muscle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.