Abstract

An improved radial basis function neural network is proposed that preprocessing is the key to improving the precision of short-term load forecasting. This paper presents a new model which is based on classical RBF neural network, combine the GA-optimized SVM radial basis function and RBF neural network. According to the date of the type, temperature, weather conditions and other factors ,The Application of combined GA-optimized SVM radial basis function is used to extract useful data to improve the load forecasting accuracy of RBF neural network. Spring load data of California were applied for simulation. The simulation indicates that the new method is feasible and the forecasting precision is greatly improved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.